

Hartshorne CE Primary School

Power Maths White Rose Edition calculation policy, UPPER KS2

KEY STAGE 2 In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate. accurate and efficient operations. Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number Addition and subtraction: Children build on their Multiplication and division: Building on their Fractions: Children find fractions of amounts. understanding, children develop methods to column methods to add and subtract numbers multiply a fraction by a whole number and by multiply up to 4-digit numbers by single-digit and another fraction, divide a fraction by a whole with up to seven digits, and they adapt the methods to calculate efficiently and effectively 2-digit numbers. number, and add and subtract fractions with with decimals, ensuring understanding of place different denominators. Children become more value at every stage. Children develop column methods with an confident working with improper fractions and mixed numbers and can calculate with them. understanding of place value, and they continue Children compare and contrast methods, and they to use the key skill of unitising to multiply and select mental methods or jottings where divide by 10, 100 and 1,000. Understanding of decimals with up to 3 decimal appropriate and where these are more likely to be places is built through place value and as efficient or accurate when compared with formal fractions, and children calculate with decimals in Written division methods are introduced and column methods. adapted for division by single-digit and 2-digit the context of measure as well as in pure numbers and are understood alongside the area arithmetic. Bar models are used to represent the calculations model and place value. In Year 6, children required to solve problems and may indicate develop a secure understanding of how division is Children develop an understanding of where efficient methods can be chosen. percentages in relation to hundredths, and they related to fractions. understand how to work with common Multiplication and division of decimals are also percentages: 50%, 25%, 10% and 1%. introduced and refined in Year 6.

	Year 5			
	Concrete	Pictorial	Abstract	
Year 5 Addition				
Column addition with whole numbers	Use place value equipment to represent additions. . Image: TTh Ima	Represent additions, using place value equipment on a place value grid alongside written methods. Image: transformed base of the second seco	Use column addition, including exchanges.	
Representing additions		Bar models represent addition of two or more numbers in the context of problem solving.	Use approximation to check whether answers are reasonable. $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	

Adding tenths	Link measure with addition of decimals. Two lengths of fencing are 0.6 m and 0.2 m. How long are they when added together? 0.6 m 0.2 m	Jen $f2,600$ Holly $f2,600$ $f1,450$ f4,050 Th H T O f4,050 Th H T O f4,050 Th H T O f4 0 5 0 f6 6 0 f6 7 0 f6 6 0 f6	Understand the link with adding fractions. $\frac{6}{10} + \frac{2}{10} = \frac{8}{10}$ $6 \text{ tenths} + 2 \text{ tenths} = 8 \text{ tenths}$ $0.6 + 0.2 = 0.8$
Adding decimals using column addition	Use place value equipment to represent additions. Show 0.23 + 0.45 using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary.	Add using a column method, ensuring that children understand the link with place value. $\frac{0 \cdot \text{Tth Hth}}{0 \cdot 2 \cdot 3}$ $\frac{+ \cdot 0 \cdot 4 \cdot 5}{0 \cdot 6 \cdot 8}$ Include exchange where required, alongside an understanding of place value.

		$\begin{array}{c cccc} \hline O & \bullet & Tth & Hth \\ \hline \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \hline \end{array} \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0 \cdot \text{Tth Hth}}{0 \cdot 9 \cdot 2}$ $+ \frac{0 \cdot 3 \cdot 3}{1 \cdot 2 \cdot 5}$ Include additions where the numbers of decimal places are different. $3.4 + 0.65 = ?$ $\frac{0 \cdot \text{Tth Hth}}{3 \cdot 4 \cdot 0}$ $+ \frac{0 \cdot 6 \cdot 5}{}$
Year 5 Subtraction			
Column subtraction with whole numbers	Use place value equipment to understand where exchanges are required. 2,250 - 1,070 = ?	Represent the stages of the calculation using place value equipment on a grid alongside the calculation, including exchanges where required. 15,735 - 2,582 = 13,153 $\boxed{\text{TTh}}$ $\boxed{\text{Th}}$ $\boxed{\text{H}}$ $\boxed{\text{T}}$ $\boxed{\text{O}}$ \text	Use column subtraction methods with exchange where required. $\boxed{17h Th H T O}{56 2 5 9 7}{-18,034} = 44,563$

Power Maths © Pearson 2022

	TTh Th H T O I 5 7 3 5 - 2 5 8 2 I I I I I I I 5 7 3 5 - 2 5 8 2 I I I I I	
	TTh Th H T O I 5 $\mathbf{\tilde{z}}$ '3 5 - 2 5 8 2 I 5 3 5 3 I I 5 3 3 I I I I I I	
	TTh Th H T O 1 5 6 Z 13 5 - 2 5 8 2 1 3 1 5 3 - - - - -	
Checking strategies and representing subtractions	Bar models represent subtractions in problem contexts, including 'find the difference'.	Children can explain the mistake made when the columns have not been ordered correctly.
	Athletics Stadium 75,450 Hockey Centre 42,300 Velodrome 15,735 ?	Use approximation to check calculations. Bella's working Correct method TTh Th H T O 1 7 8 7 7 + 4 0 1 2 5 7 9 9 7 1 7 8 8 9 1 1 1 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

			I calculated 18,000 + 4,000 mentally to check my subtraction.
Choosing efficient methods			To subtract two large numbers that are close, children find the difference by counting on.
			2,002 - 1,995 = ? $+5$ $+2$ $2,000$ $2,002$ Use addition to check subtractions. $I calculated 7,546 - 2,355 = 5,191.$ $I will check using the inverse.$
Subtracting decimals	Explore complements to a whole number by working in the context of length. 0.49 m 1 m - 0 m = 0 m 1 - 0.49 = ?	Use a place value grid to represent the stages of column subtraction, including exchanges where required. 5.74 - 2.25 = ?	Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921 - 3.75 = ?$ $\frac{0 \cdot \text{Tth } \text{Hth } \text{Thth}}{3 \cdot 9 2 1}$ $-\frac{3 \cdot 7 5 0}{.}$

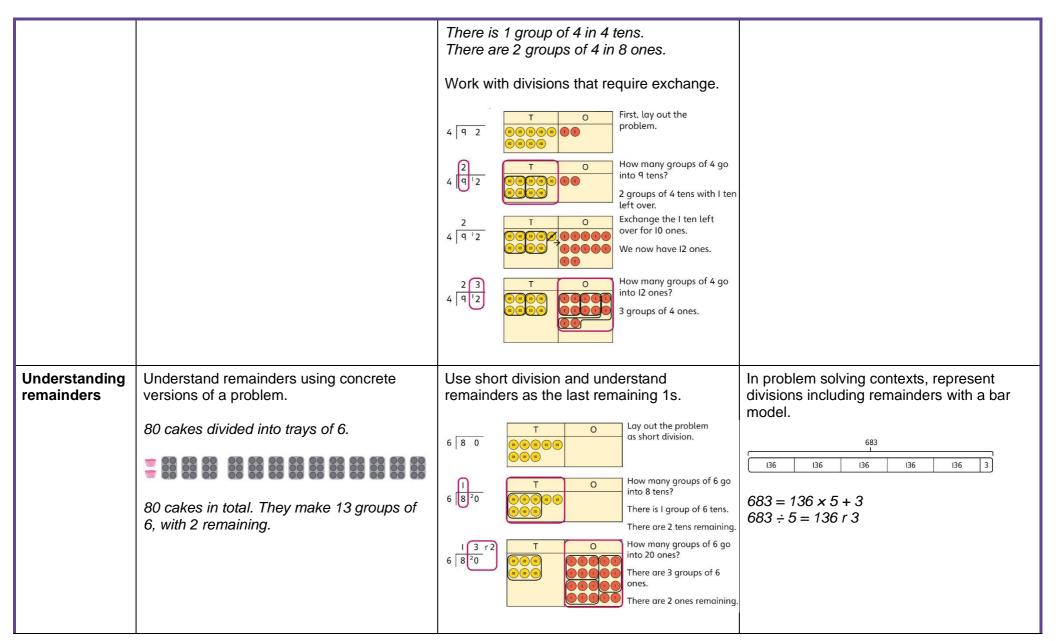
	1	· · · · · · · · · · · · · · · · · · ·	
		O • Tth Hth O · Tth Hth	
		Exchange I tenth for I0 hundredths.	
		O • Tth Hth O · Tth Hth	
		Now subtract the 5 hundredths.	
		O Tth Hth O · Tth Hth ⑦ ◎ ◎ ◎ ◎ ○ ◎ ○ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎	
		$\bullet \bigcirc \checkmark \bullet \bigcirc \checkmark \bullet \bullet \bigcirc \checkmark \bullet \bullet \bigcirc \checkmark \bullet \bullet \circ \checkmark \bullet \bullet \circ \checkmark \bullet \bullet \circ \bullet \circ \checkmark \bullet \bullet \circ \bullet \circ$	
		· q	
		Now subtract the 2 tenths, then the 2 ones.	
		O • Tth Hth O · Tth Hth	
		∅∅∅∅	
Year 5			
Multiplication			
Understanding	Use cubes or counters to explore the	Use images to explore examples and non-	Understand the pattern of square numbers
factors	meaning of 'square numbers'.	examples of square numbers.	in the multiplication tables.
	25 is a square number because it is made		Use a multiplication grid to circle each
	from 5 rows of 5.		square number. Can children spot a
			pattern?
	A CONTRACTOR OF A CONTRACTOR OFTA CONT		
		8 × 8 = 64	
	Use cubes to explore cube numbers.	$8^2 = 64$	

	8 is a cube numb	per.	12 is not a square number, because you cannot multiply a whole number by itself to make 12.	
Multiplying by 10, 100 and 1,000	Use place value 10, 100 and 1,00 4 × I = 4 ones = 4 4 × I0 = 4 tens = 40 4 × I00 = 4 hundreds = 400	equipment to multiply by 0 by unitising.	Understand the effect of repeated multiplication by 10. $7 \times 10 = 70$ $7 \times 100 = 7,000$ $7 \times 1,000 = 70,000$	Understand how exchange relates to the digits when multiplying by 10, 100 and 1,000. $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Multiplying by multiples of 10, 100 and 1,000	Use place value multiplying by un	-	Use place value equipment to represent how to multiply by multiples of 10, 100 and 1,000.	Use known facts and unitising to multiply. $5 \times 4 = 20$ $5 \times 40 = 200$ $5 \times 400 = 2,000$ $5 \times 4,000 - 20,000$

	5 groups of 3 ones is 15 ones. 5 groups of 3 tens is 15 tens. So, I know that 5 groups of 3 thousands would be 15 thousands.	$4 \times 3 = 12 4 \times 300 = 1,200$	5,000 × 4 = 20,000
Multiplying up to 4-digit numbers by a single digit	Explore how to use partitioning to multiply efficiently. $8 \times 17 = ?$ $8 \times 10 = 80$ $8 \times 10 = 80$ $8 \times 10 = 136$ So, $8 \times 17 = 136$	Represent multiplications using place value equipment and add the 1s, then 10s, then 100s, then 1,000s. H T 0 Ø Ø Ø	Use an area model and then add the parts. $100 60 3$ $5 100 \times 5 = 500 60 \times 5 = 300 3 \times 5 = 15$ Use a column multiplication, including any required exchanges. $1 3 6$ $\times 6$ $\frac{8 1 6}{2 3}$
Multiplying 2- digit numbers by 2-digit numbers	Partition one number into 10s and 1s, then add the parts. $23 \times 15 = ?$	Use an area model and add the parts. $28 \times 15 = ?$	Use column multiplication, ensuring understanding of place value at each stage.

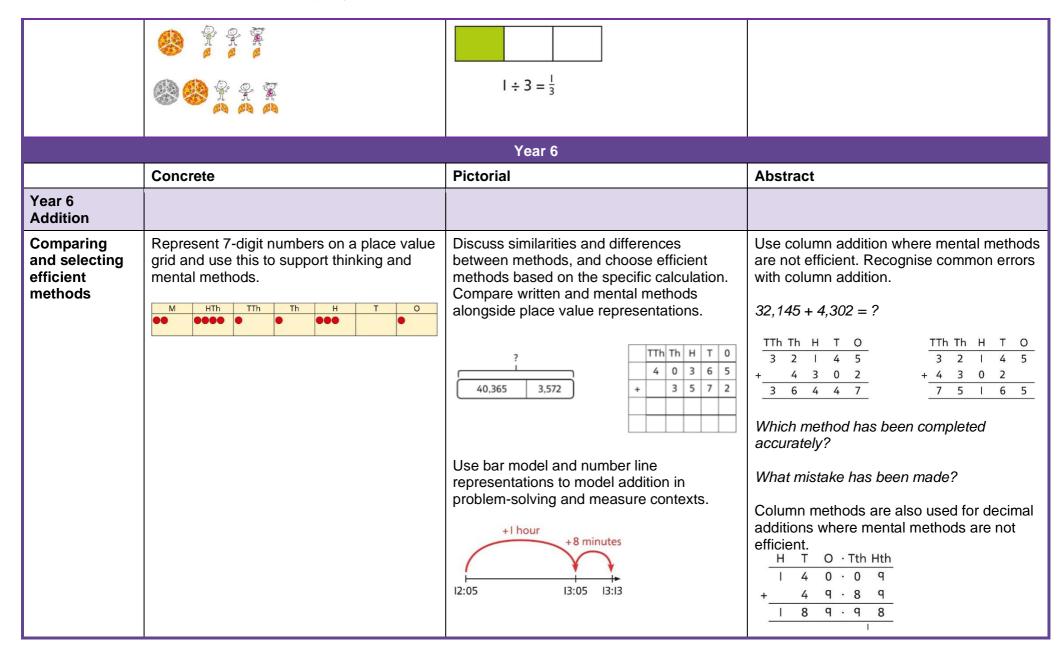
			100 - 100
		20 m 8 m <u>H T O</u> 2 0 0	3 4 × 2 7
	10 × 15 = 150	$10 \text{ m} \qquad 20 \times 10 = 200 \text{ m}^2 \qquad 8 \times 10 = 80 \text{ m}^2 \qquad 1 \qquad 0 \qquad 0 \\ 8 \qquad 0 \qquad \qquad$	$\frac{27}{23_28}$ 34 × 7
	$\begin{array}{c} \begin{array}{c} H & T & O \\ \hline I & 5 & 0 \\ \hline 3 \times 15 = 45 \end{array} & + \begin{array}{c} 4 & 5 \\ \hline 3 & 4 & 5 \\ \hline \end{array}$ There are 345 bottles of milk in total. $\begin{array}{c} \hline 3 & 4 & 5 \\ \hline \hline 3 & 4 & 5 \\ \hline \end{array}$ $\begin{array}{c} 23 \times 15 = 345 \end{array}$	5 m $20 \times 5 = 100 \text{ m}^2$ $8 \times 5 = 40 \text{ m}^2$ $\frac{4 \times 5}{4 \times 20}$ 28 × 15 = 420	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$23 \times 10 = 340$		3 4 × 2 7
			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Multiplying up to 4-digits by		Use the area model then add the parts.	Use column multiplication, ensuring understanding of place value at each stage.
2-digits		IO0 40 3 IO IO 2 IO 2 IO 0 IO 0 IO 10 IO 2 IO 10 IO 2 IO 2 IO 3 IO	4 3 × 2
		143 x 12 = 1,716 + 6 There are 1,716 boxes of cereal in total. 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		143 × 12 = 1,716	Progress to include examples that require multiple exchanges as understanding, confidence and fluency build.
			1,274 × 32 = ? First multiply 1,274 by 2.

			$ \begin{array}{c} 1 & 2 & 7 & 4 \\ \times & 3 & 2 \\ \hline 2 & 5 & 4 & 8 \\ \hline 1 & 2 & 7 & 4 \\ \hline \hline \hline \hline \hline \hline nen multiply 1,274 by 30. \\ \end{array} $ $ \begin{array}{c} 1 & 2 & 7 & 4 \\ \times & 3 & 2 \\ \hline 2 & 5 & 4 & 8 \\ \hline 2 & 5 & 4 & 8 \\ \hline 3 & 8_{2} & 2 & 0 \\ \hline \hline$
Multiplying decimals by 10, 100 and 1,000	Use place value equipment to explore and understand the exchange of 10 tenths, 10 hundredths or 10 thousandths.	Represent multiplication by 10 as exchange on a place value grid. $\overrightarrow{}$	Understand how this exchange is represented on a place value chart. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Year 5 Division			


Understanding factors and prime numbers	Use equipment to explore the factors of a given number.	Understand that prime numbers are numbers with exactly two factors.	Understand how to recognise prime and composite numbers.
	24 ÷ 3 = 8	$13 \div 1 = 13 13 \div 2 = 6 r 1 13 \div 4 = 4 r 1$	I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it
	$24 \div 8 = 3$	••••••	can be divided by 1, 3, 11 and 33.
	8 and 3 are factors of 24 because they divide 24 exactly.	1 and 13 are the only factors of 13. 13 is a prime number.	I know that 1 is not a prime number, as it has only 1 factor.
	24 ÷ 5 = 4 remainder 4.		
	5 is not a factor of 24 because there is a remainder.		
Understanding inverse operations and the link with multiplication,	Use equipment to group and share and to explore the calculations that are present. <i>I have 28 counters.</i>	Represent multiplicative relationships and explore the families of division facts.	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3 = $ $12 \div = 3$
grouping and sharing	I made 7 groups of 4. There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups	60 ÷ 4 = 15 60 ÷ 15 = 4	3 = 12 3 = 12 Understand missing number problems for division calculations and know how to solve them using inverse operations
	are 7 equal groups.		them using inverse operations. $22 \div ? = 2$ $22 \div 2 = ?$

			? ÷ 2 = 22 ? ÷ 22 = 2
Dividing whole numbers by 10, 100 and	Use place value equipment to support unitising for division.	Use a bar model to support dividing by unitising.	Understand how and why the digits change on a place value grid when dividing by 10, 100 or 1,000.
1,000	<i>4,000 ÷ 1,000</i>	$380 \div 10 = 38$	
	4,000		Th H T O 3 2 0 0
	4,000 is 4 thousands.	380	3,200 ÷ 100 = ? 3,200 is 3 thousands and 2 hundreds.
	4 × 1,000= 4,000	10 ×	$200 \div 100 = 2$ $3,000 \div 100 = 30$
	So, 4,000 ÷ 1,000 = 4	380 is 38 tens. 38 × 10 = 380 10 × 38 = 380 So, 380 ÷ 10 = 38	3,200 ÷ 100 = 32 So, the digits will move two places to the right.
Dividing by multiples of 10, 100 and 1,000	Use place value equipment to represent known facts and unitising.	Represent related facts with place value equipment when dividing by unitising.	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check.
			$\begin{array}{l} 3,000 \div 5 = 600 \\ 3,000 \div 50 = 60 \\ 3,000 \div 500 = 6 \end{array}$
	15 ones put into groups of 3 ones. There are 5 groups. 15 \div 3 = 5	180 is 18 tens.	$5 \times 600 = 3,000$ $50 \times 60 = 3,000$ $500 \times 6 = 3,000$
	15 tens put into groups of 3 tens. There are 5 groups.	18 tens divided into groups of 3 tens. There are 6 groups.	

	150 ÷ 30 = 5	$180 \div 30 = 6$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. 268 ÷ 2 = ? There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. 264 ÷ 2 = 134	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. $4 \boxed{4 \ 8} \qquad \boxed{T \ 0} \\ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	Use short division for up to 4-digit numbers divided by a single digit. 0 5 5 6 $7 3^3 8^3 9^4 2$ $3,892 \div 7 = 556$ Use multiplication to check. $556 \times 7 = ?$ $6 \times 7 = 42$ $50 \times 7 = 350$ $500 \times 7 = 3500$ 3,500 + 350 + 42 = 3,892

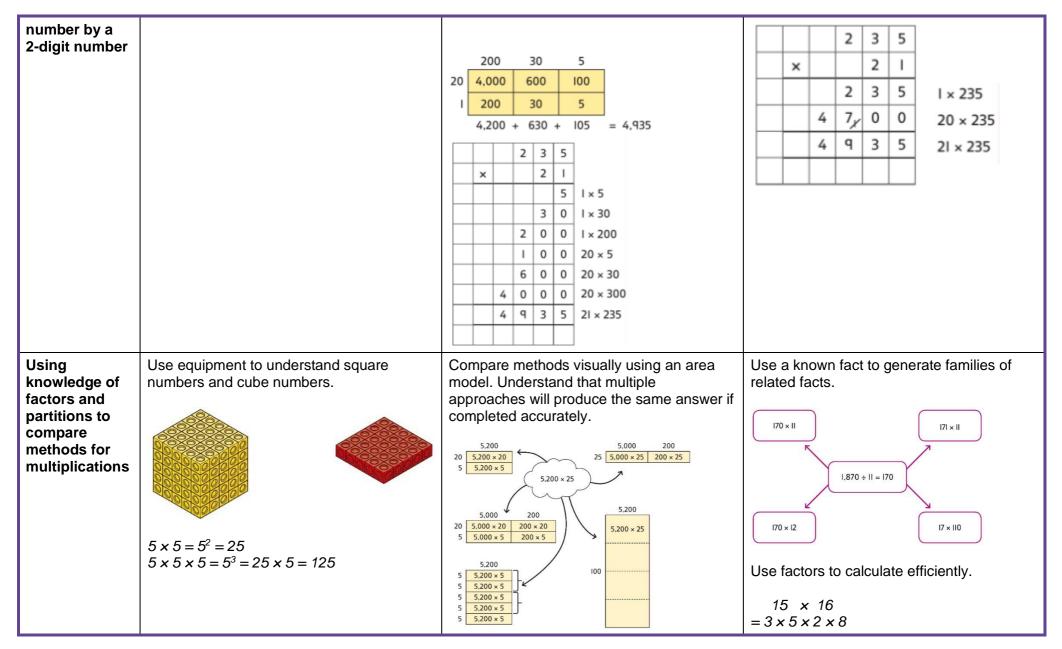


		ĺ	
Dividing decimals by 10, 100 and	Understand division by 10 using exchange.	Represent division using exchange on a place value grid.	Understand the movement of digits on a place value grid.
1,000	2 ones are 20 tenths. 20 tenths divided by 10 is 2 tenths.	O • Tth Hth • • • • • • • • • • Tth Hth Ø • • Hth	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		• •	$0.85 \div 10 = 0.085$
			O•TthHthThth8•5•0•0>8>5
		1.5 is 1 one and 5 tenths.	8·5 ÷ 100 = 0·085
		This is equivalent to 10 tenths and 50 hundredths. 10 tenths divided by 10 is 1 tenth. 50 hundredths divided by 10 is 5	
		hundredths. 1.5 divided by 10 is 1 tenth and 5 hundredths. $1.5 \div 10 = 0.15$	
Understanding the relationship	Use sharing to explore the link between fractions and division.	Use a bar model and other fraction representations to show the link between fractions and division.	Use the link between division and fractions to calculate divisions.
between fractions and division	1 whole shared between 3 people. Each person receives one-third.		$5 \div 4 = \frac{5}{4} = 1\frac{1}{4}$
			$11 \div 4 = \frac{11}{4} = 2\frac{3}{4}$

Power Maths White Rose Edition calculation policy

Power Maths © Pearson 2022

Selecting mental methods for larger numbers where appropriate	Represent 7-digit numbers on a place value grid and use this to support thinking and mental methods. 2,411,301 + 500,000 = ? This would be 5 more counters in the HTh place. So, the total is 2,911,301. 2,411,301 + 500,000 = 2,911,301	Use a bar model to support thinking in addition problems. 257,000 + 99,000 = ? i $f_{257,000}$ $f_{100,000}$ <i>I added 100 thousands then subtracted</i> <i>1 thousand.</i> 257 thousands + 100 thousands = 357 thousands 257,000 + 100,000 = 357,000 357,000 - 1,000 = 356,000 So, 257,000 + 99,000 = 356,000	Use place value and unitising to support mental calculations with larger numbers. 195,000 + 6,000 = ? 195 + 5 + 1 = 201 195 thousands + 6 thousands = 201 thousands So, 195,000 + 6,000 = 201,000
Understanding order of operations in calculations	Use equipment to model different interpretations of a calculation with more than one operation. Explore different results. $3 \times 5 - 2 = ?$	Model calculations using a bar model to demonstrate the correct order of operations in multi-step calculations. 16×4 cob $444444444444444444444444444444444444$	Understand the correct order of operations in calculations without brackets. Understand how brackets affect the order of operations in a calculation. $4 + 6 \times 16$ 4 + 96 = 100 $(4 + 6) \times 16$ $10 \times 16 = 160$



Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. 2.679 $\hline 2.679$ $\hline 7$ $\hline 7$ $\hline 534$ $\hline Th$ H T O $\hline 2$ $\hline 6$ 7 $q\hline -5\hline 3\hline 4\hline 21\hline 5\hline 3\hline 4\hline 5\hline 2\hline 67$ $q\hline -\hline 5\hline 3\hline 4\hline 5\hline 2\hline 67$ $q\hline 2\hline 67$ $q\hline 2\hline 67$ $q\hline 2\hline 1\hline 8\hline 8\hline 8\hline 9\hline 9\hline 9\hline 9\hline 9\hline 9\hline 9\hline 9\hline 10\hline 10\hline 9\hline 10\hline 10\hline$	1,952

Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. 950,000 - 150,000 That is 950 thousands - 150 thousands 950 $150 \leftarrow 800$ So, the difference is 800 thousands. 950,000 - 150,000 = 800,000	Subtract efficiently from powers of 10. 10,000 - 500 = ?
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Use place value equipment to compare methods. Method I 3 2 5 5 3 2 2 5 3 2 2 5 3 2 2 5 3 2 2 5 1 2 9 0 0 1 1 1 1 Method 2 $4 \times 3,000$ + 4×200 + 4×20 + 4×5 20 = 12,900	Understand area model and short multiplication. Compare and select appropriate methods for specific multiplications. Method 3 $3,000 \ 200 \ 20 \ 5$ $4 \ 12,000 \ 800 \ 80 \ 20$ 12,000 + 800 + 80 + 20 = 12,900 Method 4 $1 \ 2 \ 9 \ 0 \ 0$ $1 \ 1 \ 2$
Multiplying up to a 4-digit		Use an area model alongside written multiplication.	Use compact column multiplication with understanding of place value at all stages.

		Represent and compare methods using a bar model.	$= 3 \times 8 \times 2 \times 5 = 24 \times 10 = 240$
Multiplying by 10, 100 and 1,000	Use place value equipment to explore exchange in decimal multiplication. $ \begin{array}{c c} \hline $	Understand how the exchange affects decimal numbers on a place value grid. $\overrightarrow{1 0 \cdot 1 \text{th}}$ $\overrightarrow{1 0 \cdot 3 \times 10 = 3}$	Use knowledge of multiplying by 10, 100 and 1,000 to multiply by multiples of 10, 100 and 1,000. $8 \times 100 = 800$ $8 \times 300 = 800 \times 3$ = 2,400 $2.5 \times 10 = 25$ $2.5 \times 20 = 2.5 \times 10 \times 2$ = 50
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures.	Represent calculations on a place value grid. $3 \times 3 = 9$ $3 \times 0.3 = 0.9$ TOOTTH 000 000 000 000 000 000 000	Use known facts to multiply decimals. $4 \times 3 = 12$ $4 \times 0.3 = 1.2$ $4 \times 0.03 = 0.12$ $20 \times 5 = 100$ $20 \times 0.5 = 10$ $20 \times 0.05 = 1$ Find families of facts from a known multiplication. <i>I know that 18 × 4 = 72.</i> <i>This can help me work out:</i>

	$4 \times 1 cm = 4 cm$ $4 \times 0.3 cm = 1.2 cm$ $4 \times 1.3 = 4 + 1.2 = 5.2 cm$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	18 × 0·4 180 × 0· 18 × 0·0 Use a pl	$1 \cdot 8 \times 4 = ?$ $18 \times 0 \cdot 4 = ?$ $180 \times 0 \cdot 4 = ?$ $18 \times 0 \cdot 04 = ?$ Use a place value grid to understand the effects of multiplying decimals.					
				Н	Т	0	•	Tth	Hth
			2 × 3			6	•		
			0·2 × 3			0	•	6	
			0·02 × 3				•		
Year 6 Division									
Understanding factors	Use equipment to explore different factors of a number.	Recognise prime numbers as numbers having exactly two factors. Understand the link with division and remainders.	Recogni Understa and that	and th	hat 2	is the	on	ly eve	n prime,
	24 ÷ 4 = 6	17+2=8r1 17+3=5r2 17+4=4r1 17+5=3r2	11 12 21 22 31 32	3 4 13 14 23 24 33 34 43 44	15 1 25 2 35 3	36 37	28 38		

	30 ÷ 4 = 7 remainder 2 4 is a factor of 24 but is not a factor of 30.		
Dividing by a single digit	Use equipment to make groups from a total.	HTO \bullet <t< th=""><th>Use short division to divide by a single digit.</th></t<>	Use short division to divide by a single digit.
	There are 78 in total. There are 6 groups of 13. There are 13 groups of 6.	H T O How many groups of 6 are in 12 ones? How many groups of 6 are in 12 ones? How many groups of 6 are in 12 ones?	0 2 6 I ¹ 3 ¹ 2
			0 2 2 6 1 3 2 Use an area model to link multiplication and division.

Dividing by a 2-digit number using factors	Understand that division by factors can be used when dividing by a number that is not prime.	Use factors and repeated division. $1,260 \div 14 = ?$ $1,260 \div 2 = 630$ $630 \div 7 = 90$ $1,260 \div 14 = 90$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Dividing by a 2-digit number using long division	Use equipment to build numbers from groups. 182 divided into groups of 13. There are 14 groups.	Use an area model alongside written division to model the process. $377 \div 13 = ?$	2,100 \rightarrow $(\div 3) \rightarrow$ $(\div 2) \rightarrow$ $(\div 2) \rightarrow$ Use long division where factors are not useful (for example, when dividing by a 2-digit prime number). Write the required multiples to support the division process. $377 \div 13 = ?$ $\downarrow \qquad \qquad$

		377 ÷ 13 = 29	$\begin{array}{ c c c c c c c c c }\hline & 2 & 9 \\\hline 13 & 3 & 7 & 7 \\\hline - & 1 & 3 & 0 & 10 \\\hline 2 & 4 & 7 & \\\hline - & 1 & 3 & 0 & 10 \\\hline 1 & 7 & 7 & \\\hline - & 1 & 7 & 7 & \\\hline - & 1 & 7 & 7 & \\\hline 0 & 0 & 0 & \end{array}$ $377 \div 13 = 29$ A slightly different layout may be used, with the division completed above rather than at the side. $21 \overline{\begin{array}{c} 3 \\ 7 & 9 \\ 8 \\\hline - & 6 & 3 & 0 \\\hline 1 & 6 & 8 \\\hline - & 6 & 3 & 0 \\\hline 1 & 6 & 8 \\\hline - & \frac{1 & 6 & 8 \\\hline 0 & 0 \\\hline \end{array}}$
Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange.	Represent division to show the relationship with multiplication. Understand the effect of	Divisions with a remainder explored in problem-solving contexts. Use knowledge of factors to divide by multiples of 10, 100 and 1,000.

	$ \begin{array}{c c} \hline & & & \\ \hline \\ \hline$	dividing by 10, 100 and 1,000 on the digits on a place value grid. $\begin{array}{c} 12\\ \hline 1\\ \hline 1\\ \hline 1\\ \hline 2\\ \hline 1\\ \hline 2\\ \hline 1\\ \hline 2\\ \hline 2$	$40 \div 50 =$ $40 \rightarrow (\div 10) \rightarrow (\div 5) \rightarrow ?$ $40 \rightarrow (\div 5) \rightarrow (\div 10) \rightarrow ?$ $40 \div 5 = 8$ $8 \div 10 = 0.8$ So, $40 \div 50 = 0.8$
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $\begin{array}{c c} 0.8\\ \hline ? & ? & ? & ?\\ 4 \times 2 = 8 & 8 \div 4 = 2\\ \text{So, } 4 \times 0.2 = 0.8 & 0.8 \div 4 = 0.2\end{array}$	Use short division to divide decimals with up to 2 decimal places. $8 \overline{4 \cdot 2 4}$ $0 \cdot {8 \overline{4 \cdot 42 4}}$ $8 \overline{4 \cdot 42 4}$ $0 \cdot 5$ $8 \overline{4 \cdot 42^{2} 4}$ $0 \cdot 5 3$ $8 \overline{4 \cdot 42^{2} 4}$